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Abstract

In this paper, we present a mathematical model to describe the simultaneous heat and mass transfer with liquid

phase change in unsaturated porous media. Two-dimensional natural convective flow in an inclined rectangular en-

closure with porous material unsaturated with fluid is analyzed numerically. The parameter variations are considered

for the tilted angle, the aspect ratio and the Darcy–Rayleigh number. Local and global Nusselt numbers are presented

as functions of those parameters. Compared with the saturated porous material, the heat transfer characters in the

unsaturated case are discussed for the identical aspect ratio and Darcy–Rayleigh number, The discussion is also made

for the field synergy of fluid velocity and heat flow in natural convection.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are many applications of natural convection in

porous media, such as heat storage using porous media,

porousmedia insulationmaterials, undergrounddiffusion

of contaminants, petroleum extraction and electronic

cooling. These sorts of applications have motivated an

increasing number of investigations on it.

In most practical situations, the flow pattern in po-

rous media would probably be three-dimensional.

However, two-dimensional flows do exist both under

laboratory conditions and in nature. The understanding

from two-dimensional analysis may facilitate the studies

on the fully three-dimensional situation. In the present

study, we focus on the natural convection in the unsat-

urated porous media with two-dimensional pattern.

Consider a rectangular enclosure with two opposing

walls at constant temperatures separately and the other

two walls thermally insulated, which was tilted with re-

spect to the horizontal direction. A lot of theoretical and

experimental work dealt with the titled enclosure with

porous material. Valsuk [1] determined numerically the

heat transfer as a function of the tilted angle and found

that the global Nusselt number is maximized at an angle

of approximate 50� for Darcy–Reyleigh numbers in the

range of 100–350. This effect was also found by Holst

and Aziz [2], who investigated a square enclosure satu-

rated by a fluid with temperature-dependent physical

properties. Weber [3] investigated the thermal convec-

tion in a layer of infinite extension using a perturbation

technique. Walch and Dulieu [4] analyzed the convec-

tion in slightly inclined two-dimensional cavities and

showed that anomalous modes exist for inclinations less

7�. Using analytical and numerical methods, Caltagirone

and Bories [5] determined two- and three-dimensional

solutions for the inclined box and examined their sta-

bility. Experimental work was also conducted by Bories

[6,7] and his coworkers. They reported hexagonal cells

similar to B�eenard–Rayleigh cell for a < 15� and 40 <
R < 250, where a is the tilted angle and R is the Darcy–

Rayleigh number. Multiple cells with axes parallel to the
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top and bottom walls were found for 40 < R cos a <
240. There are no sharply defined boundaries for sepa-

rating the different modes. Kaneko et al. [8] made ex-

periments by using some kind of sand in the range of

a < 30�. They reported multiple transversal cells with

horizontal axes for a < 15�. A single two-dimensional

cell appeared for a > 15�.
In the above publications, the authors concentrated

their studies on the porous media saturated with single

fluid. Unsaturated porous media with phase change

have received less attention. Compared with the porous

media saturated with single fluid, much more physical

mechanisms in transport process are involved in the

liquid-unsaturated porous media. In the view of the

complexity of multi-phase flow and phase change pro-

cess, Slattery [9] and Whitaker [10] originally developed

the averaged-volume method to solve the problem.

Based on the thermodynamics principle, Philip and

DeVries [11], DeVries [12] and Luikov [13] carried out

the excellent work. Bouddor et al. [14] presented a new

mathematical model for heat and mass transfer in po-

rous media and tried to take all the complexity of in-

teractions into account. But his mathematical model is

too complex to be solved. Minkowyca et al. [15] inves-

tigated the phenomena on departure from local thermal

equilibrium that is a typical assumption in most studies

conducted on multi-phase flow in unsaturated porous

media. Some other work [16,17] aimed to analyze the

effect of ambient parameters on all field variables was

carried out in the confined soil bed with profiling all

Nomenclature

a tilted angle

b included angle between eVVg and rH vectors

c specific heat, J=ðkgKÞ
Da Darcy number

Dl diffusivity of liquid in porous medium, m2=s
Dv molecular diffusivity of vapor in air, m2=s
DTv diffusivity due to existence of temperature

gradient, m2=ðsKÞ
Dlv diffusivity due to existence of moist content

gradient, m2=s
g acceleration of gravity, m=s2

H height of the porous layer, m

i unit vector

j unit vector

Ja factor of phase change, dimensionless

number

k unit gravitational acceleration vector

kg equivalent permeability of gas-mixture, m2

kl unsaturated permeability of liquid, m2

Kg infiltrating conductivity of gas-mixture, m=s
Kl hydraulic conductivity of liquid, m=s
Le Lewis number

_mm mass rate of phase change, kg=ðm3 sÞ
M aspect ratio

Num global Nusselt number

Nux local Nusselt number

P pressure, Pa

Pr Prandtl number

R Darcy–Rayleigh number

S source term, saturation

t time, s

T temperature, K(�C)
u velocity component in x-direction, m=s
v velocity component in y-direction, m=s
V averaging volume, m3

V velocity vector, m=s
Vv;d vapor diffusivity velocity, m=s
W width of the porous layer, m

X, Y spatial coordinates, m

Greek symbols

a thermal diffusivity of fluid, m2=s
am thermal diffusivity of porous media, m2=s
b thermal expansion coefficient, 1=K
c latent heat, J=kg
CD dimensionless number

e phase content, %

km apparent thermal conductivity, W=ðmKÞ
k thermal conductivity, W=ðmKÞ
H dimensionless temperature

K dimensionless conductivity

l viscosity, kg=ðmsÞ
t kinematic viscosity, m2=s
q density, kg=m3

/ dimensionless parameter

x porosity, %

Subscripts

a air, ambient

c cold wall

eff effective quantities

g gaseous mixture

h hot wall

l liquid

m apparent mean, mass

s solid

v vapor

Superscript

� dimensionless quantities
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variable distributions in two dimension, influenced by

the ambient conditions.

The objective of the present study is to analyze nu-

merically the behavior of natural convection flows in a

tilted rectangular porous layer unsaturated with liquid-

water. The effect of phase change of water has been

emphasized. The study is also concerned with the heat

transfer characteristics in the porous layer, and the

method of field synergy is adopted to describe the

mechanism of local heat transfer enhancement.

2. Mathematical formulations

2.1. Theoretical considerations

We have established a model [18] to describe the si-

multaneous heat, moisture and vapor migration in un-

saturated porous media with phase change. The field

variables include temperature T, liquid content el, pres-
sure P, liquid velocity V l, gas velocity Vg, vapor velocity

Vv and phase change rate of evaporation and conden-

sation _mm. For the two-dimensional flow, the velocity

vectors can be written as

V l ¼ uli þ vlj; Vg ¼ ugi þ vgj; Vv ¼ uvi þ vvj:

Continuity equations

Liquid:

oðelqlÞ
ot

þr � ðelqlV lÞ ¼ � _mm ð1Þ

Gas:

oðegqgÞ
ot

þr � ðegqgVgÞ ¼ _mm ð2Þ

Vapor:

oðegqvÞ
ot

þr � ðegqvVvÞ ¼ _mm ð3Þ

Momentum equations

Liquid phase:

oV l

ot
þ V l � rV l �

_mm
elql

V l ¼ � gDl

Kl

rel �
gel
Kl

V l �
geg
Kg

	 ðV l � VgÞ � g þ mlr2V l

ð4Þ

Gaseous phase:

oVg

ot
þ Vg � rVg þ

_mm
egqg

Vg

¼ � 1

qg

rp � geg
Kg

ðVg � V lÞ � gbðT � TcÞ þ mgr2Vg

ð5Þ

Energy equation

ðqcÞm
oT
ot

þ ððqcÞlV l þ ðqcÞgVg þ ðqcÞmVvÞ � rT

þ ððqcÞlV l � rel þ ðqcÞgVg � reg þ ðqcÞmVv � regÞT

¼ kmr2T � _mmc þ S ð6Þ

Some of the characteristics for the above theoretical

modeling could be discussed as follows.

(1) The absolute velocity of vapor is defined as

Vv ¼ Vg þ Vv;d, and the vapor diffusive velocity is in-

dicated as Vv;d ¼ �DTvrT � Dlvrel [18]. When the

quantification relations among diffusive velocity, tem-

perature and vapor phase content are established, we

can easily explain the effect of vapor diffusion on the

equilibrium of mass and energy. Thus the continuity

equation (3) can be taken as a supplement relation

contributed to the present model, and the absolute ve-

locity of vapor plays an important role in the energy

equation. This may be the good way of adding micro-

mechanism of the molecular diffusivity into macromo-

tion of gaseous phase, through relative relation between

V l and Vg which appears also in the momentum equa-

tion.

(2) The Dalton�s partial pressure law P ¼ Pa þ Pv is

introduced in the modeling assumptions (Pa for air

partial pressure and Pv for saturated vapor pressure),

and the volumetric content relation of ea ¼ ev ¼ eg for

air and vapor are satisfied (air and vapor are filled ev-

erywhere in the pore-space of porous media). Thus we

can reasonably regard that ea and ev are not independent
variables, while eg is depended on el which is the only

content-independent variable. This treatment may be the

key point for us to solve the problem by reducing the

variables numbers in the equations.

(3) Based on the fact that e ¼ es þ el þ eg, the mean

physical properties of porous media can be written as

ðqcÞm ¼ esðqcÞs þ elðqcÞl þ egðqcÞg. And also from the

principle of constant volume content for gaseous com-

ponents eg ¼ ea ¼ ev, we simply set ðqcÞg ¼ qaca þ qvcv.
The apparent heat conductivity of the porous material,

according to the mean-weighted method, is simply de-

fined as km ¼ esks þ elkl þ egkg.

(4) We could say from the above discussions that,

two kinds of physical states (liquid and vapor) and

motion manners (macromotion and microdiffusivity) for

the moisture in the unsaturated porous material are both

considered in the mathematical modeling. Both of the

motion rate and the phase-change rate for moisture can

be taken into account.

(5) Noting that Kl ¼ klg=tl and Kg ¼ kgg=tg, we

had developed an effective formulation to calculate the

gaseous infiltrating conductivity Kg [19] corresponding

to the liquid hydraulic conductivity Kl, which can

demonstrate the mechanisms of Darcy�s drag resistance
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in terms of gaseous phase and the reaction of liquid to

gaseous mixture. It may be rarely considered by others

and could be written as

Kg ¼ ð1� SÞ3 1� x
1� xð1� SÞ

� �4=3 vl
vg
Kl ð7Þ

Through such a disposal, we can overcome the diffi-

culty due to lacking of physical property in the gaseous

momentum equation, and get reasonable calculation

results benefiting from this. Furthermore, it allows us to

consider the relative motion between gas and liquid

phases by the Darcy�s terms both in gas and liquid

momentum equations (4) and (5).

(6) As we assume that the liquid vapor in the inter-

stitial space is of the saturated pressure, so that the

present model is developed to reflect the evaporation

and the condensation in the porous matrix. As a matter

of fact, the phase change in the unsaturated porous

material acts as an evaporation source some time or a

condensation sink some other time, or both of source

and sink at the same time in different regions. The sign

of field variable _mm could represent the characteristic of

source or sink. The contribution of phase change rate _mm
has been added into the mass, momentum and energy

equations.

From the above discussions, we have explained the

present ten-variable equations, in which the momentum

equations are very analogous to Navier–Stokes equation,

but very different from the Darcy�s motion equation. By

adding the following expression as a supplemental re-

lation for the model, the equations (1)–(6) can be per-

fected mathematically.

Vv ¼ Vg þ Vv;d ¼ Vg � DTvrT � Dlvrel ð8Þ

There should be no doubts that the mathematical

model under investigation introduces more transport or

migration mechanisms in the bed of unsaturated porous

material compared with some other models, which im-

proves the theoretical modeling both mathematically

and physically.

2.2. Dimensionless model simplification

Consider a rectangular water-unsaturated porous

layer as depicted in Fig. 1, where T1 and T0 represent the
temperature of the hot and the cold walls respectively,

while the other two walls are adiabatic. The layer is

tilted at an angle with respect to the horizontal plane,

and H is units high and W units wide.

Basic assumptions have been made as: (1) Local

thermal equilibrium is satisfied throughout the porous

media; (2) Gaseous mixture (air plus vapor) in the en-

closure can be treated as ideal gas; (3) Partial pressure of

vapor is in the equilibrium pressure of saturated state;

(4) Boussinesq�s approximation is suitable for natural

convection in gaseous space; (5) Momentum change rate

of liquid is so small that it could be omitted.

In the present investigation, we analyze the steady

state, not involving the relative relations between the

liquid and the gas phases. To simplify the controlling

equations, the dimensionless quantities are defined as

H ¼ T � Tc
Th � Tc

; ePP ¼ kg
amqgvg

P ; eVV l ¼
H
am

V l;

eVVg ¼
H
am

Vg; eVVm ¼
H
am

Vv; ~mm ¼ H 2

am

_mm;

Da ¼ kg
H 2

; R ¼ gbDTkgH
amvg

; Pr ¼ vg
am

;

Le
 ¼ am

DTv
DT ; Le

 ¼ am

Dlv

; K ¼ kg

km

;

CD ¼ Dl

am

; ~gg ¼ H 3

vlam

g; Ja ¼ c
c
DT ;

/l ¼
ðqcÞl
ðqcÞm

; /g ¼
ðqcÞg
ðqcÞm

; /m ¼
ðqcÞv
ðqcÞm

:

The dimensionless equations becomes

rðel~qql
eVV lÞ ¼ � ~mm ð9Þ

rðeg~qqg
eVVgÞ ¼ ~mm ð10Þ

rðeg~qqv
eVVvÞ ¼ ~mm ð11Þ

eVV l ¼ �CD

el
rel þ

Da
el

~ggk ð12Þ

Da
KPr

eVVg � reVVg ¼ �rePP � eg eVVg þ KRHkþ Dar2 eVVg ð13Þ

ð/l
eVV l þ /g

eVVg þ /m
eVVmÞ � rH ¼ r2H � Ja ~mm ð14Þ

where k ¼ � sin ai þ cos aj stands for the unit gravita-

tional acceleration vector. The dimensionless equation

for vapor diffusivity takes the form as

Fig. 1. The tilted porous layer.
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eVVv;d ¼ �rH=Le
 � re=Le

 ð15Þ

The non-dimensional boundary conditions are

X ¼ 0;
oH
oX

¼ 0; eVVg ¼ eVV l ¼ 0 ð16Þ

X ¼ 1;
oH
oX

¼ 0; eVVg ¼ eVV l ¼ 0 ð17Þ

Y ¼ 0; H ¼ 1; eVVg ¼ eVVl ¼ 0 ð18Þ

Y ¼ 1; H ¼ 0; eVVg ¼ eVVl ¼ 0 ð19Þ

t ¼ 0; HðX ; Y ; tÞ ¼ 0 ð20Þ

The non-dimensional stream function of gas phase is

defined by

~uug ¼
oW
oX

; ~mmg ¼ � oW
oY

; ð21Þ

The non-dimensional heat transfer coefficient is defined

as:

(1) The local Nusselt number

Nux ¼
oH
oY

ð22Þ

(2) The global Nusselt number

Num ¼
Z 1

0

oH
oY

dX ð23Þ

3. Numerical analysis and discussion

The difference schemes are selected for the different

equations to solve the problem. The center scheme is

used for liquid phase and vapor diffusion equations, the

upwind scheme is used for Eq. (11), and the hybrid

scheme is used for gas phase momentum equations and

energy equation. The iterative cycle was repeated until

the difference in the global Nusselt number at the hot

and cold walls was within 0.1%.

3.1. Convective mode

It should be remarked that we refer to two-dimen-

sional convective motion for the gaseous mixture. An

obvious characteristic of natural convection in the sat-

urated porous material is the appearance of single or

multiple cells flows [20]. For the present numerical in-

vestigation, we observed the similar flow modes for the

unsaturated case. Depending on the aspect ratio M ¼
W =H , the tilted angle a and the Darcy–Rayleigh number

R, single or multiple cells convection can be found. For

M ¼ 1, R ¼ 100 or 40, the single cell mode was obtained

in the angle range 0�6 a6 180�. Two examples of such

flow are given in Figs. 2 and 3 where the streamlines,

isotherms and contours of evaporation and condensa-

tion rates are shown for a ¼ 30�, R ¼ 100 and 40 respec-

tively. Figs. 2(2,3) and 3(2,3) show that the magnitudes

Fig. 2. (1) Isotherms, (2) streamlines and (3) contours of evap-

oration and condensation rates for M ¼ 1, R ¼ 100, a ¼ 30�.
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of the stream function and the evaporation or conden-

sation rates become larger as R increases, which indi-

cates a more vigorous motion in the porous layer as

expected. In Figs. 2(1) and 3(1), we find that heat

transfer is more effective at the upper- and lower-most

corners where the temperature gradients are greater.

This effect can be implied from the deformation of iso-

thermal lines caused by the motion of gaseous mixture

with phase change, which is totally different from the

conductive pattern.

When aspect ratios are greater than unity, a variety

of convective modes appear. For M ¼ 3 and a small R,

single cell convection takes place for tilted angles larger

than 50� approximately. Different multiple-cell flow

patterns appear for smaller tilted angles. Typical iso-

therms and streamlines for R ¼ 40 and a ¼ 45�, 22.5�,
15� and 0� are shown in Figs. 4–7. Fig. 4 shows a single

cell where the gaseous mixture circulates inside the po-

rous layer. Fig. 5 shows a typical convective mode with

one main cell plus two secondary cells. As the tilted

angle is further reduced to 15�, three clearly isolated cells

circulate in the alternate directions. When the porous

layer is horizontal, namely a ¼ 0�, four cells develop

with rotation in the alternate directions.

Concerning the behaviors of evaporation and con-

densation, we find that they are strongly correlated with

the convective mode. When the convective motion takes

the form of single cell or a main cell with secondary cells

(Figs. 2–5), there are a core of evaporation and a core of

condensation appearing at the lower-and upper-most

Fig. 4. (1) Isotherms, (2) streamlines and (3) contours of evap-

oration and condensation rates for M ¼ 3, R ¼ 40, a ¼ 45�.

Fig. 3. (1) Isotherms, (2) streamlines and (3) contours of evap-

oration and condensation rates for M ¼ 1, R ¼ 40, a ¼ 30�.
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corners respectively. For multiple-cell flow (Figs. 6 and

7), it can be observed that several cores of evaporation

or condensation exist in the vicinity of the hot wall or

the cold wall.

3.2. Heat transfer characteristics

We can use the local Nusselt number Nux to identify

the regions on the wall where heat transfer is more ef-

fective. This is shown for the hot wall in Fig. 8 for

R ¼ 40 and aspect ratio of M ¼ 3 and M ¼ 1 respec-

tively. It is clearly shown that most of the heat is

transferred near the right corners of the porous layer for

the single cell mode which corresponds to the curve of

a ¼ 60� in Fig. 8(1) and either of curves in Fig. 8(2).

When multiple-cell flow presents, which corresponds to

the curve of a ¼ 15� in Fig. 8(1), heat transfer is en-

hanced in the vicinity of curve peaks. Although the

curve of Nux for M ¼ 3 and a ¼ 15� fluctuates in the X-

direction, it is found that the presence of multiple-cell

mode has the overall effect of increasing heat transfer, as

shown in Fig. 10.

The phenomena of synergy between the fluid velocity

and the heat flow field for convective heat transfer

[21,22] can well explain the local heat transfer en-

hancement here. Noting that the velocity vector eVVg and

the temperature gradient rH are two essential factors
Fig. 6. (1) Isotherms, (2) streamlines and (3) contours of evap-

oration and condensation rates for M ¼ 3, R ¼ 40, a ¼ 15�.

Fig. 5. (1) Isotherms, (2) streamlines and (3) contours of evap-

oration and condensation rates for M ¼ 3, R ¼ 40, a ¼ 22:5�.
Fig. 7. (1) Isotherms, (2) streamlines and (3) contours of evap-

oration and condensation rates for M ¼ 3, R ¼ 40, a ¼ 0�.
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dominating the heat convection, for the flow near the

hot wall of the porous layer (see Fig. 1), the variations of

the product of the absolute values jeVVgj � jrHj, the in-

cluded angle b between vectors eVVg and rH, and the local

Nusselt number Nux in the X -direction are shown in

Figs. 9 and 10 for a ¼ 30� and R ¼ 100 with M ¼ 1 and

3 respectively. We arbitrarily choose two points A and B

along the cross-section of porous layer near the wall to

let jeVVgj � jrHjðAÞ ¼ jeVVgj � jrHjðBÞ shown in Fig. 9(1).

There should be the counterparts for A and B in Fig.

9(2–3), namely A0 and A00 corresponding to A, B0 and B00

to B. Their geometry positions meet X ðA0Þ ¼ X ðA00Þ ¼
X (A) and X ðB0Þ ¼ X ðB00Þ ¼ X (B). It can be observed

that when the product jeVVgj � jrHjðAÞ ¼ jeVVgj � jrHjðBÞ,
the included angle bðA0Þ > bðB0Þ, but the local Nus-

selt number NuxðA00Þ < NuxðB00Þ. Likewise, we find

when jeVVgj � jrHjðCÞ ¼ jeVVgj � jrHjðDÞ, bðC0Þ > bðD0Þ but
NuxðC00Þ < NuxðD00Þ in Fig. 10. Although we only enu-

Fig. 8. Variations of the Nusselt numbers with X for (1)

R ¼ 40, M ¼ 3 and (2) R ¼ 40, M ¼ 1.

Fig. 9. Variations of jeVVgj � jrHj, b and Nux with X for R ¼ 100,

a ¼ 30� and M ¼ 1.
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merate two examples for a ¼ 30�, the similar results

have been obtained for different a, with any R and M. It

can be seen that the local Nusselt number depends not

only on the absolute values of vectors eVVg and rH, but

also on their angle b. The smaller the included angle, the

greater the heat transport rate for the range of b < 90�.
The global Nusselt number Num for M ¼ 1, M ¼ 3,

R ¼ 100 and R ¼ 40 in the cases of saturated and un-

saturated porous media are shown in Fig. 11 as the

functions of the tilted angle a. The curves of unit aspect
ratio show a single maximum at the tilted angle about

50�. However, the curves of aspect ratio M ¼ 3 feature

several local maxima. For the unsaturated case with

M ¼ 3 and R ¼ 100, the first maximum is at a ¼ 15�,
and the second one at the tilted angle of 70� approxi-

mately. For the situation of M ¼ 3 and R ¼ 40, the first

maximum is at a ¼ 0�, the second one at a ¼ 15� and the

third one at a ¼ 70� approximately. In the Fig. 11(2)

for saturated porous layer, the appearance of single

Fig. 11. Variations of the global Nusselt numbers with a for (1)

M ¼ 1 and (2) M ¼ 3.

Fig. 10. Variations of jeVVgj � jrHj, b and Nux with X for R ¼
100, a ¼ 30� and M ¼ 3.
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maximum in the curve at the tilted angle about 70� for
aspect ratio M ¼ 3 and R ¼ 40 can be explained by a

single cell flow, which is very analogous to the case of

unit aspect ratio. However, the appearance of several

peaks in the curves for M ¼ 3 and R ¼ 100 or 40 should

have the geometry characteristics for aspect ratio greater

than unity, which is due to the convection with multiple

cells.

It is also shown in Fig. 11 that the overall heat

transfer in porous layer is very sensitive to the magni-

tudes of M, a and R. The global Nusselt number may be

expressed in terms of Num ¼ f ðM ; a;RÞ. However, we

can impressively observe from Fig. 11 that for the

identical R and M, the curves of Num in the unsaturated

case is higher than those in the saturated case. In the

titled porous layer unsaturated with flow fluid, although

the global Nusselt number may be still described as a

function of the variables M, a and R, those variables

influence not only the flow patterns of the fluid but also

the behaviors of evaporation and condensation. Besides

the heat conduction and the heat convection, the phase

change of the liquid plays an important role in the heat

transport process in the enclosure with porous media.

Heat transfer is enhanced because of the phase change in

the unsaturated porous layer.

4. Conclusions

The natural convection in a two-dimensional porous

layer unsaturated with fluid was numerically investi-

gated. Depending on the aspect ratio M, the Darcy–

Rayleigh number R and the tilted angle a, single cell or

multiple-cell convection can take place, which demon-

strates convective flow patterns.

For the different flow patterns that may influence the

behavior of phase change of liquid, there exists the peak

value for global Nusselt number with the change of til-

ted angle for different aspect ratio M. The multiple-cell

convection obviously enlarges the heat transfer through

the porous layer. It can be concluded that the overall

heat transfer performance for the porous layer unsatu-

rated with liquid is much better than that for the satu-

rated one.

The phenomena of synergy between the fluid velocity

and heat flow field have been observed for convective

heat transfer in an inclined rectangular enclosure packed

with unsaturated porous media. It was found that at

arbitrary two points along porous layer near the wall,

the smaller is the included angle between the velocity

vector and the heat flow vector, the greater the heat

transport rate becomes. Therefore, the intensity of

convective heat transfer depends not only on the fluid

velocity and its properties as expected, but also on the

included angle of velocity and temperature gradient

vectors, which dominates the local heat transfer rate.
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